The Noise Figure (NF) is an important metric for low noise amplifiers and SDRs. It's a measure of how much components in the signal chain degrade the SNR of a signal, so a low noise figure metric indicates a more sensitive receiver. The Noise Figure of a radio system is almost entirely determined by the very first amplifier in the signal chain (the one closest to the antenna), which is why it can be very beneficial to have a low NF LNA placed right at the antenna
Over on his blog Rowetel has been attempting to measure the noise figure of his HackRF and Airspy, and also with the SDRs connected to an LNA. He's managed to come up with a method for measuring the noise figure of these devices in real time. The method involves using a GNU Octave script that he created and a calibrated signal generator.
It’s a GNU Octave script called nf_from_stdio.m that accepts a sample stream from stdio. It assumes the signal contains a sine wave test tone from a calibrated signal generator, and noise from the receiver under test. By sampling the test tone it can establish the gain of the receiver, and by sampling the noise spectrum an estimate of the noise power.
As expected, Rowetel found that the overall noise figure was significantly reduced with the LNA in place, with the Airspy's measuring a noise figure of 1.7/2.2 dB, and the HackRF measuring at 3.4 dB. Without the LNA in place, the Airspy's had a noise figure of 7/7.9 dB, whilst the HackRF measured at 11.1 dB.
Some very interesting sources of noise figure degradation were discovered during Rowetel's tests. For example the Airspy measured a NF 1 dB worse when used on a different USB port, and using a USB extension cable with ferrites helped too. He also found that lose connectors could make the NF a few dB's worse, and even the position of the SDR and other equipment on his desk had an effect.
The post Measuring the Noise Figure of Airspy and HackRF SDRs in Real Time appeared first on rtl-sdr.com.